## **Important Question: Should Pop Cans be a Different Size?**



If you went back in time and were able to design the first 12 oz pop can, what would be important to keep in mind as you design the shape and size?



2...

3...



Now, measure a can (make all measurements to the nearest 0.1 cm)

| Can            | Diameter | Radius | Height |
|----------------|----------|--------|--------|
| Original 12 oz |          |        |        |

After measuring, calculate the *Volume*, *Surface Area*, and  $\frac{\textit{Volume}}{\textit{Surface Area}}$ 

| Can            | Volume | Surface Area | Volume       |  |
|----------------|--------|--------------|--------------|--|
|                |        |              | Surface Area |  |
| Original 12 oz |        |              |              |  |



What is the importance of the value of  $\frac{Volume}{Surface\ Area}$ ? Would you want the value of  $\frac{Volume}{Surface\ Area}$  to be higher or lower if you were making the cans?

Now, modify the <u>radius</u> of the pop can (but use the <u>original height</u>). Pick a few values that are higher & lower than the original. Re-calculate the *Volume*, *Surface Area*, and  $\frac{Volume}{Surface Area}$ 

| Can          | New Radius | Height | Volume | Surface Area | Volume<br>Surface Area |
|--------------|------------|--------|--------|--------------|------------------------|
| Original Can |            |        |        |              |                        |
| Prototype 1  |            |        |        |              |                        |
| Prototype 2  |            |        |        |              |                        |
| Prototype 3  |            |        |        |              |                        |
| Prototype 4  |            |        |        |              |                        |

Which worked better...higher or lower or the same radius?

Now, modify the <u>height</u> of the pop can (but use the <u>original radius</u>). Pick a few values that are higher & lower than the original. Re-calculate the *Volume*, *Surface Area*, and  $\frac{Volume}{Surface Area}$ 

| Can          | Radius | New Height | Volume | Surface Area | Volume<br>Surface Area |
|--------------|--------|------------|--------|--------------|------------------------|
| Original Can |        |            |        |              |                        |
| Prototype 5  |        |            |        |              |                        |
| Prototype 6  |        |            |        |              |                        |
| Prototype 7  |        |            |        |              |                        |
| Prototype 8  |        |            |        |              |                        |

Which worked better...higher or lower or the same height?

Now, modify both the height & radius of the pop can...Pick new values based on what you learned in the previous prototypes. Re-calculate the *Volume*, *Surface Area*, and  $\frac{Volume}{Surface Area}$ 

| Can          | New Radius | New Height | Volume | Surface Area | Volume       |
|--------------|------------|------------|--------|--------------|--------------|
|              |            |            |        |              | Surface Area |
| Original Can |            |            |        |              |              |
| Prototype 9  |            |            |        |              |              |
| Prototype 10 |            |            |        |              |              |

Which Prototype can size that you designed was best?

There are many reasons why pop can size should not be changed. List a few

1...

2...

3...

